Jumat, 09 September 2011

TEORI ASAM DAN BASA

Beri Rating:
Sebarkan:

Lintas Berita Digg Facebook Lintas Berita

Teori Asam dan Basa
Ditulis oleh Jim Clark pada 07-11-2007

Halaman ini menggambarkan teori asam dan basa Arrhenius, Bronsted-Lowry, dan Lewis, dan halaman ini juga menjelaskan hubungan antara ketiga teori asam dan basa tersebut. Halaman ini juga menjelaskan konsep pasangan konjugasi – asam dan basa konjugasinya, atau basa dan asam konjugasinya.
Teori asam dan basa Arrhenius

Teori

Asam adalah zat yang menghasilkan ion hidrogen dalam larutan.

Basa adalah zat yang menghasilkan ion hidroksida dalam larutan.

Penetrala

n terjadi karena ion hidrogen dan ion hidroksida bereaksi untuk menghasilkan air.

Pembatasan teori

Asam hidroklorida (asam klorida) dinetralkan oleh kedua larutan natrium hidroksida dan larutan amonia. Pada kedua kasus tersebut, kamu akan memperoleh larutan tak berwarna yang dapat kamu kristalisasi untuk mendapatkan garam berwarna putih – baik itu natrium klorida maupun amonium klorida.

Keduanya jelas merupakan reaksi yang sangat mirip. Persamaan lengkapnya adalah:

Pada kasus natrium hidroksida, ion hidrogen dari asam bereaksi dengan ion hidroksida dari natrium hidroksida – sejalan dengan teori Arrhenius.

Akan tetapi, pada kasus amonia, tidak muncul ion hidroksida sedikit pun!

anda bisa memahami hal ini dengan mengatakan bahwa amonia bereaksi dengan air yang melarutkan amonia tersebut untuk menghasilkan ion amonium dan ion hidroksida:

Reaksi ini merupakan reaksi reversibel, dan pada larutan amonia encer yang khas, sekitar 99% sisa amonia ada dalam bentuk molekul amonia. Meskipun demikian, pada reaksi tersebut terdapat ion hidroksida, dan kita dapat menyelipkan ion hidroksida ini ke dalam teori Arrhenius.

Akan tetapi, reaksi yang sama juga terjadi antara gas amonia dan gas hidrogen klorida.

Pada kasus ini, tidak terdapat ion hidrogen atau ion hidroksida dalam larutan – karena bukan merupakan suatu larutan. Teori Arrhenius tidak menghitung reaksi ini sebagai reaksi asam-basa, meskipun pada faktanya reaksi tersebut menghasilkan produk yang sama seperti ketika dua zat tersebut berada dalam larutan. Ini adalah sesuatu hal yang lucu!
Teori asam dan basa Bronsted-Lowry

Teori

Asam adalah donor proton (ion hidrogen).

Basa adalah akseptor proton (ion hidrogen).

Hubungan antara teori Bronsted-Lowry dan teori Arrhenius

Teori Bronsted-Lowry tidak berlawanan dengan teori Arrhenius – Teori Bronsted-Lowry merupakan perluasan teori Arrhenius.

Ion hidroksida tetap berlaku sebagai basa karena ion hidroksida menerima ion hidrogen dari asam dan membentuk air.

Asam menghasilkan ion hidrogen dalam larutan karena asam bereaksi dengan molekul air melalui pemberian sebuah proton pada molekul air.

Ketika gas hidrogen klorida dilarutkan dalam air untuk menghasilkan asam hidroklorida, molekul hidrogen klorida memberikan sebuah proton (sebuah ion hidrogen) ke molekul air. Ikatan koordinasi (kovalen dativ) terbentuk antara satu pasangan mandiri pada oksigen dan hidrogen dari HCl. Menghasilkan ion hidroksonium, H3O+.

Ketika asam yang terdapat dalam larutan bereaksi dengan basa, yang berfungsi sebagai asam sebenarnya adalah ion hidroksonium. Sebagai contoh, proton ditransferkan dari ion hidroksonium ke ion hidroksida untuk mendapatkan air.

Tampilan elektron terluar, tetapi mengabaikan elektron pada bagian yang lebih dalam:

Adalah sesuatu hal yang penting untuk mengatakan bahwa meskipun anda berbicara tentang ion hidrogen dalam suatu larutan, H+(aq), sebenarnya anda sedang membicarakan ion hidroksonium.

Permasalahan hidrogen klorida / amonia

Hal ini bukanlah suatu masalah yang berlarut-larut dengan menggunakan teori Bronsted-Lowry. Apakah anda sedang membicarakan mengenai reaksi pada keadaan larutan ataupun pada keadaan gas, amonia adalah basa karena amonia menerima sebuah proton (sebuah ion hidrogen). Hidrogen menjadi tertarik ke pasangan mandiri pada nitrogen yang terdapat pada amonia melalui sebuah ikatan koordinasi.

Jika amonia berada dalam larutan, amonia menerima sebuah proton dari ion hidroksonium:

Jika reaksi terjadi pada keadaan gas, amonia menerima sebuah proton secara langsung dari hidrogen klorida:

Cara yang lain, amonia berlaku sebagai basa melalui penerimaan sebuah ion hidrogen dari asam.

Pasangan konjugasi

Ketika hidrogen klorida dilarutkan dalam air, hampir 100% hidrogen klorida bereaksi dengan air menghasilkan ion hidroksonium dan ion klorida. Hidrogen klorida adalah asam kuat, dan kita cenderung menuliskannya dalam reaksi satu arah:

Pada faktanya, reaksi antara HCl dan air adalah reversibel, tetapi hanya sampai pada tingkatan yang sangat kecil. Supaya menjadi bentuk yang lebih umum, asam dituliskan dengan HA, dan reaksi berlangsung reversibel.

Perhatikan reaksi ke arah depan:

HA adalah asam karena HA mendonasikan sebuah proton (ion hidrogen) ke air.

Air adalah basa karena air menerima sebuah proton dari HA.

Akan tetapi ada juga reaksi kebalikan antara ion hidroksonium dan ion A-:

H3O+ adalah asam karena H3O+ mendonasikan sebuah proton (ion hidrogen) ke ion A-.

Ion A- adalah basa karena A- menerima sebuah proton dari H3O+.

Reaksi reversibel mengandung dua asam dan dua basa. Kita dapat menganggapnya berpasangan, yang disebut pasangan konjugasi.

Ketika asam, HA, kehilangan sebuah proton asam tersebut membentuk sebuah basa A-. Ketika sebuah basa, A-, menerima kembali sebuah proton, basa tersebut kembali berubah bentuk menjadi asam, HA. Keduanya adalah pasangan konjugasi.

Anggota pasangan konjugasi berbeda antara satu dengan yang lain melalui kehadiran atau ketidakhadiran ion hidrogen yang dapat ditransferkan.

Jika anda berfikir mengenai HA sebagai asam, maka A- adalah sebagai basa konjugasinya.

Jika anda memperlakukan A- sebagai basa, maka HA adalah sebagai asam konjugasinya.

Air dan ion hidroksonium juga merupakan pasangan konjugasi. Memperlakukan air sebagai basa, ion hidroksonium adalah asam konjugasinya karena ion hidroksonium memiliki kelebihan ion hidrogen yang dapat diberikan lagi.

Memperlakukan ion hidroksonium sebagai asam, maka air adalah sebagai basa konjugasinya. Air dapat menerima kembali ion hidrogen untuk membentuk kembali ion hidroksonium.

Contoh yang kedua mengenai pasangan konjugasi

Berikut ini adalah reaksi antara amonia dan air yang telah kita lihat sebelumnya:

Hal pertama yang harus diperhatikan adalah forward reaction terlebih dahulu. Amonia adalah basa karena amonia menerima ion hidrogen dari air. Ion amonium adalah asam konjugasinya – ion amonium dapat melepaskan kembali ion hidrogen tersebut untuk membentuk kembali amonia.

Air berlaku sebagai asam, dan basa konjugasinya adalah ion hidroksida. Ion hidroksida dapat menerima ion hidrogen untuk membentuk air kembali.

Perhatikanlah hal ini pada tinjauan yang lain, ion amonium adalah asam, dan amonia adalah basa konjugasinya. Ion hidroksida adalah basa dan air adalah asam konjugasinya.

Zat amfoter

Anda mungkin memperhatikan (atau bahkan mungkin juga tidak memperhatikan!) bahwa salah satu dari dua contoh di atas, air berperilaku sebagai basa, tetapi di lain pihak air berperilaku sebagai asam.

Suatu zat yang dapat berperilaku baik sebagai asam atau sebagai basa digambarkan sebagai amfoter.

Teori asam dan basa Lewis

Teori ini memperluas pemahaman anda mengenai asam dan basa.

Teori

Asam adalah akseptor pasangan elektron.

Basa adalah donor pasangan elektron.

Hubungan antara teori Lewis dan teori Bronsted-Lowry

Basa Lewis

Hal yang paling mudah untuk melihat hubungan tersebut adalah dengan meninjau dengan tepat mengenai basa Bronsted-Lowry ketika basa Bronsted-Lowry menerima ion hidrogen. Tiga basa Bronsted-Lowry dapat kita lihat pada ion hidroksida, amonia dan air, dan ketianya bersifat khas.

Teori Bronsted-Lowry mengatakan bahwa ketiganya berperilaku sebagai basa karena ketiganya bergabung dengan ion hidrogen. Alasan ketiganya bergabung dengan ion hidrigen adalah karena ketiganya memiliki pasangan elektron mandiri – seperti yang dikatakan oleh Teori Lewis. Keduanya konsisten.

Jadi bagaimana Teori Lewis merupakan suatu tambahan pada konsep basa? Saat ini belum – hal ini akan terlihat ketika kita meninjaunya dalam sudut pandang yang berbeda.

Tetapi bagaimana dengan reaksi yang sama mengenai amonia dan air, sebagai contohnya? Pada teori Lewis, tiap reaksi yang menggunakan amonia dan air menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi yang akan terhitung selama keduanya berperilaku sebagai basa.

Berikut ini reaksi yang akan anda temukan pada halaman yang berhubungan dengan ikatan koordinasi. Amonia bereaksi dengan BF3 melalui penggunaan pasangan elektron mandiri yang dimilikinya untuk membentuk ikatan koordinasi dengan orbital kosong pada boron.

Sepanjang menyangkut amonia, amonia menjadi sama persis seperti ketika amonia bereaksi dengan sebuah ion hidrogen – amonia menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi. Jika anda memperlakukannya sebagai basa pada suatu kasus, hal ini akan berlaku juga pada kasus yang lain.

Asam Lewis

Asam Lewis adalah akseptor pasangan elektron. Pada contoh sebelumnya, BF3 berperilaku sebagai asam Lewis melalui penerimaan pasangan elektron mandiri milik nitrogen. Pada teori Bronsted-Lowry, BF3 tidak sedikitpun disinggung menganai keasamannya.

Inilah tambahan mengenai istilah asam dari pengertian yang sudah biasa digunakan.

Bagaimana dengan reaksi asam basa yang lebih pasti – seperti, sebagai contoh, reaksi antara amonia dan gas hidrogen klorida?

Pastinya adalah penerimaan pasangan elektron mandiri pada nitrogen. Buku teks sering kali menuliskan hal ini seperti jika amonia mendonasikan pasangan elektron mandiri yang dimilikinya pada ion hidrogen – proton sederhana dengan tidak adanya elektron disekelilingnya.

Ini adalah sesuatu hal yang menyesatkan! anda tidak selalu memperoleh ion hidrogen yang bebas pada sistem kimia. Ion hidogen sangat reaktif dan selalu tertarik pada yang lain. Tidak terdapat ion hidrogen yang tidak bergabung dalam HCl.

Tidak terdapat orbital kosong pada HCl yang dapat menerima pasangan elektron. Mengapa, kemudian, HCl adalah suatu asam Lewis?

Klor lebih elektronegatif dibandingkan dengan hidrogen, dan hal ini berarti bahwa hidrogen klorida akan menjadi molekul polar. Elektron pada ikatan hidrogen-klor akan tertarik ke sisi klor, menghasilkan hidrogen yang bersifat sedikit positif dan klor sedikit negatif.

Pasangan elektron mandiri pada nitrogen yang terdapat pada molekul amonia tertarik ke arah atom hidrogen yang sedikit positif pada HCl. Setelah pasangan elektron mandiri milik nitrogen mendekat pada atom hidrogen, elektron pada ikatan hidrogen-klor tetap akan menolak ke arah klor.

Akhirnya, ikatan koordinasi terbentuk antara nitrogen dan hidrogen, dan klor terputus keluar sebagai ion klorida.

Hal ini sangat baik ditunjukkan dengan notasi "panah melengkung" seperti yang sering digunakan dalam mekanisme reaksi organik.

Pengertian Asam, Basa, dan Garam

registrasi
Silahkan login bagi member:


User
Password
Ingat Saya
Lupa password?

Did U Know .. ?
Warna merah digunakan sebagai tanda peringatan dikarenakan sifatnya yang dapat membuat kita merasa tegang dan tidak tenang. Selain itu warna merah juga dapat tetap menyala terang walaupun dilihat dari jauh.

-anonim-
[+] Kamu Mengetahui Sesuatu ?

Pengertian Asam, Basa dan Garam
* * * * 5 pemilih
39,991 views | May 31, 2010
oleh octa

Asam
Asam itu asal ya dari bahasa latin, yaitu denfan ktaacidus yang artinya masam. Asam menurut Arrhenius adalah senyawa yang menghasilkan ion hidrogen ketika larut dalam pelarut air. Kekuatan asam ditentukan oleh banyak-sedikitnya ion hidrogen yang dihasilkan. Semakin banyak ion H+ yang dihasilkan, semakin kuat sifat asamnya.
No Nama asam Terdapat dalam

1. Asam asetat Larutan cuka
2. Asam askorbat Jeruk,tomat,sayuran
3. Asam sitrat Jeruk
4. Asam tanat Teh
5. Asam karbonat Minuman berkarbonasi
6. Asam klorida Lambung
7. Asam nitrat Pupuk,peledak (TNT)
8. Asam laktat Susu yang difermentasikan
9. Asam sulfat Baterai mobil,pupuk
10. Asam benzoat bahan pengawet makanan

1. Sifat asam
Suatu zat dapat dikatakan asam apabila zat tersebut memiliki sifat-sifat sebagai berikut.

a. Memiliki rasa asam/masam/kecut jika dikecap.
b. Menghasilkan ion H+ jika dilarutkan dalam air.
c. Memiliki pH kurang dari 7 (pH < 7). d. Bersifat korosif, artinya dapat menyebabkan karat pada logam. e. Jika diuji dengan kertas lakmus, mengakibatkan perubahan warna sebagai berikut. • Lakmus biru -> berubah menjadi warna merah.
• Lakmus merah -> tetap berwarna merah.
f. Menghantarkan arus listrik.
g. Bereaksi dengan logam menghasilkan gas hidrogen.

Pengelompokan asam
Berdasarkan kekuatannya, asam itu terbagi menjadi dua kelompok, yaitu:
a. Asam kuat, yaitu asam yang banyak menghasilkan ion yang ada dalam larutannya (asam yang terionisasi sempurna dalam larutannya).
b. Asam lemah, adalah asam yang sedikit menghasilkan ion yang ada dalam larutannya (hanya terionisasi sebagian).

Asam juga berguna dalam kehidupan sehari-hari kita lho, contohnya adalah sebagai berikut:
a. Proses dalam pembuatan pupuk
b. Proses dalam Pembuatan obat-obatan
c. Pembersih permukaan logam

d. Proses pembuatan Bahan peledak
e. Proses pembuatan Pengawet makanan

Basa
Basa kalu menurut Arrhenius ialah senyawa yang terlarut dalam air yang sudah menghasilkan ion hidroksida (OH). Semakin banyaknya jumlah ion OH yang dihasilkan, maka semakin kuat lah sifat basanya. Basa juga dapat menetralisasikan asam (H+) dan menghasilkan air (H20).

Inilah Beberapa basa yang sudah dikenal oleh manusia yang dapat dilihat pada tabel berikut
No Nama asam Terdapat dalam
1. Aluminium hidroksida Deodoran dan antasida
2. Kalsium hidroksida Mortar dan plester
3. Magnesium hidroksida Obat urus-urus dan antasida
4. Natrium hidroksida Bahan sabun

Karakteristik basa
Suatu zat dapat dikatakan basa jika zat tersebut punya sifat sebagai berikut.
a. Rasanya itu Pahit dan terasa licin pada kulit.
b. Apabila dilarutkan dalam air zat tersebut akan akan menghasilkan ion OH”.
c. Memiliki pH di atas 7 (pH > 7).
d. Bersifat elektrolit.

e. Jika diuji menggunakan kertas lakmus akan memberikan hasil sebagai berikut.

• Lakmus merah -> berubah warnanya menjadi biru.
• Lakmus biru -> tetap berwarna biru
f. Menetralkan sifat asam.

Pengelompokan basa
Berdasarkan kemampuan melepaskan ion OH”, basa dapat terbagi menjadi 2 yaitu :
a. Basa kuat, yaitu basa yang bisa menghasilkan ion OH dalam jumlah yang besar. Basa kuat biasanya disebut dengan istilah kausatik. Contohnya kayak Natrium hidroksida, Kalium hidroksida, dan Kalsium hidroksida.
b. Sedangkan Basa lemah, yaitu basa yang bisa menghasilkan ion OH” dalam jumlah kecil.Contohnya kayak ammonia.

Penggunaan basa dalam suatu kehidupan sehari-hari
a. Bahan dalam pembuatan semen.
b. Pembuatan deterjen/sabun.
c. Baking soda dalam pembuatan kue.

Garam
Garam ialah zat senyawa yang telah disusun oleh ion positif (anion) basa dan ion negatif (kation) asam. Jika asam dan basa tepat habis bereaksi maka reaksinya disebut reaksi penetralan (reaksi netralisasi).

Beberapa contoh garam yang dikenal orang sebagai berikut.
NO Nama garam Rumus Nama dagang manfaat

1. Natrium klorida NaCI Garam dapur Penamabah rasa makanan
2. Natrium bikarbonat NaHCO3 baking soda Pengembang kue
3. Kalsium karbonat CaCO3 kalsit Cat tembok dan bahan karet
4. Kalsium nitrat KNO3 Saltpeter Pupuk dan bahan peleda
k
5. Kalsium karbonat K2CO3 Potash Sabun dan kaca
6. Natrium posfat Na3PO4 TSP Deterjen
7. Amonium klorida NH4CI Salmiak Baterai keringBerikut ini ragam indikator.
1. Indikator alami (terbuat dari zat warna alami tumbuhah)
Indikator alami hanya bisa menunjukkan apakah zat tersebut bersifat asam atau basa, tetapi tidak dapat menunjukan nilai pH-nya. Contohnya kayak Ekstrak bunga mawar. Ekstrak kembang sepatu. Ekstrak kunyit. Ekstrak temulawak. Ekstrak wortel. Ekstrak kol (kubis) merah. Tanaman HydrangeaIndikator sintetis yang umum ini digunakan di laboratorium adalah:
a. Kertas lakmus. Indikator lakmus tidak dapat menunjukkan nilai pH, tetapi hanya mengidentlfikasikan apakah suatu zat bersifat basa atau asam. Jika lakmus berwarna merah berarti zat bersifat asam dan jika lakmus berwarna biru berarti lakmus bersifat basa.

b. Indikator sintesis, yang memiliki kisaran nilai pH adalah:
Nama indikator trayek pH Perubahan warna
1. fenolftalein (pp) 8,3-10 tak berwarna-merah muda
2. Metil orange(Mo) 3,2-4,4 Merah-kuning
3. Metil merah (Mm) 4,8-6,0 Merah-kuning
4. Bromtimol biru (Bb) 6,0-7,6 Kuning-biru
5. Metil biru (Mb) 10,6-13,4 Biru-ungu

Indikator universal, yakni indikator yang punya warna standar yang berbeda untuk setiap nilai pH 1 - 14. Fungsi indikator universal adalah untuk memeriksa derajat keasaman (pH) suatu zat secara akurat. Mat yang termasuk indikator universal adalah pH meter yang menghasilkan data pembacaan indikator secara digital.

Berikut ini adalah karakteristik dari garam.
1. Memiliki titik lebur yang tinggi.
2. Merupakan senyawa ionik dengan ikatan kuat.
3. Dalam bentuk leburan atau larutan dapat menghantarkan listrik.
4. Sifat larutannya dapat berupa asam, basa, atau netral. Sifat ini tergantung dari jenis asam/basa kuat pembentuknya.

Secara umum, proses pembentukan garam dirumuskan sebagai berikut.
Asam + Basa -> Garam + Air

Contoh:

2Cu (s) + 2HCI 2CuCI H2
(logam tembaga) + (asam klorida encer) -> tembaga klorida + (gas hidrogen)

Reaksi kimia lain yang dapat menghasilkan garam adalah:
1.Asam + Basa menghasilkan garam + air
2.Basa + Oksida asam menghasilkan garam + air
3.Asam + Oksida basa menghasilkan garam + air
4.Oksida asam + Oksida basa Menghasilkan garam
5.Logam + Asam menghasilkan garam menghasilkan garam + H2

Indikator, Skala Keasaman dan Kebasaan
Indikator adalah senyawa kompleks yang bisa bereaksi dengan asam dan basa. Indikator digunakan untuk mengidentifikasi apakah suatu zat bersifat asam atau basa. Selain itu, indikator juga digunakan untuk mengetahui titik tingkat kekuatan asam atau basa. Skala keasaman dan kebasaan ditunjukkan oleh besar-kecilnya nilai pH yang skalanya dari 0 sampai dengan 14. Semakin kecil nilai pH maka senyawa tersebut semakin asam. Sebaliknya, semakin besar nilai pH maka senyawa tersebut semakin bersifat basa.
Indikator dapat terbuat dari zat warna alami tanaman atau dibuat secara sintetis di laboratorium. Syarat dapat atau tidaknya suatu zat dijadikan indikator asam-basa adalah bisa terjadi perubahan warna apabila suatu indikator diteteskan pada larutan asam atau basa.
Unduh Tulisan

Kamis, 08 September 2011

Wisata Cianjur


WISATA CIANJUR

Pesona Curug Citambur

curug citambur cianjur selatan 
CURUG Citambur, sebuah air terjun yang ketinggiannya kira-kira 100 meter di Desa Karang Jaya, Kec. Pagelaran, Cianjur Selatan. Airnya sangat dingin dan tak ada yang berani bermandi di air jatuhannya. Dipastikan badan akan terasa sakit sekali bila tertimpa air jatuhan karena volumenya cukup besar, jauh lebih besar dan tinggi dari Curug Cimahi di daerah Cisarua, Kab. Bandung.
Air terjun yang lokasinya selatan Ciwidey, Kab. Bandung, yang jaraknya kira-kira 40 km itu, berpanorama indah. Sekitar curug selalu diliputi kabut tipis dan suara air jatuhannya begitu keras dan sesekali diselingi suara burung kutilang, seakan memperkaya simfoni suara alam kawasan itu.
Berada di sana serasa di alam yang masih “perawan”, belum banyak disentuh tangan manusia. Objek wisata itu masih eksotis. Ada dua versi, kenapa curug itu bernama Citambur. Dargana, Ketua Badan Pertimbangan Desa (BPD) Desa Karang Jaya menjelaskan, kata orang tua dulu, setiap air terjun yang jatuh ke kolam berbunyi “bergedebum” seperti tambur.
Saat itu, mungkin volume air terjun jauh lebih besar dari sekarang dan kolamnya cukup luas sehingga menimbulkan bunyi seperti alat musik tabuh yang dipukul setiap air menimpa kolam. Seiring menyusutnya volume air, bunyi itu tak terdengar lagi.

Rabu, 07 September 2011

kALOR

Proses Melebur dan Membeku
Perubahan wujud dari padat menjadi cair disebut mencair atau melebur, sebaliknya perubahan wujud zat dari cair menjadi padat disebut membeku. Grafik berikut adalah grafik proses meleburnya es dari temperatur -50C hingga temperaturnya 00C. Kemudian pada temperatur 00C, es dipanaskan atau diberikan kalor, dan ternyata temperatur es tidak mengalami perubahan, tetapi es berubah wujud menjadi air
 
 
Berikut adalah grafik perubahan wujud dari es menjadi air
 
 
Kalor yang dibutuhkan untuk melebur dusebut dengan kalor laten peleburan atau kalor lebur (L), sedangkan kalor yang dilepas ketika zat membeku disebut kalor laten pembekuan atau kalor beku (L). Hasil percobaan para ilmuan menunjukkan bahwa kalor lebir sama dengan kalor beku. Jadi kalor suatu zat didefinisikan sebagai kalor yang diperlukan oleh satu satuan massa zat untuk melebur seluruhnya pada titik leburnya. Jika suatu zat massanya m gram, untuk melebur seluruhnya dbutuhkan kalor sebesar Q joule. Berdasarkan definisi ini, kalor lebur zat (L) dapat dinyatakan dengan persamaan sebagai berikut
 

Selasa, 06 September 2011

Sambutlah ‘si CINTA’ chi

dila noviiskandardinata

Saat malam mulai larut
Suasanapun semakin senyap
Aku terbujur dalam kekakuan
Karena hati terpasung dalam kesepian
Kesedihan dengan kesendirian
Seakan menggugurkan sejuta harapan
Sepinya malam berlalu sudah
Pagi datang mengawali hari baru
Aku terbangun dari panjangnya malam
Perlahan aku bergerak,
Berdiri dan kubuka jendela
Tersiratlah cahaya mentari pagi
Menyinari……
Menghempaskan semua khayalan kepahitan

Memang, Aku harus tetap tegar berdiri
Songsong hari yang baru
Sambut dengan sesuatu yang indah
Wujudkan misteri cita dan cinta


Sambutlah ‘si CINTA’ yang cantik
Berikan dia senyum
Warnailah hari-hari dengan cinta